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Abstract

The main goal of this joint project between the Naval Postgraduate School and the University
of California, Santa Cruz, was to analyze the mathematical proprieties of pseudospectral (PS)
optimal control theory. The secondary goal of our project was to exploit the new properties to
develop or enhance computationally efficient control algorithms. These goals were motivated
by a need to generate real-time solutions to constrained nonlinear control problems that plays
a central role in low-cost operations of high-performance space systems. In this project, we
developed a general framework for PS optimal control theory based on discretization over an
arbitrary (i.e. non-Gaussian) grid. Our analysis on dual consistency revealed some hidden
properties of PS methods; and led to a new PS scheme utilizing primal-only conditions. These
new developments enhance the algorithmic efficiency that is crucial for real-time applications.
During this research period, we also got an opportunity to apply our ideas to the time-optimal
reorientation of a NASA spacecraft in orbit; and performed a historic command and control of
the Transition Region and Coronal Explorer (TRACE) space telescope.

Introduction

High performance of space systems demands full considerations of the nonlinearity and strin-
gent constraints. Optimal control plays a central role in designing efficient feedback control
algorithms for such complicated high-performance space systems. As a means to address the
challenges of future space systems, we address the problem of generating a real-time solution to
the following generic constrained nonlinear optimal control problem:

(B)


Minimize J [x(·), u(·)] = E(x(−1), x(1)) +

∫ 1

−1
F (x(t), u(t)) dt

Subject to ẋ(t) = f(x(t), u(t))
e(x(−1), x(1)) = 0
h(x(t), u(t)) ≤ 0

where F : RNx ×RNu 7→ R, E : RNx ×RNx 7→ R, f : RNx ×RNu 7→ RNx , e : RNx ×RNx 7→ RNe ,
h : RNx × RNu 7→ RNh , and N with the appropriate subscript is some given natural number.

Over the last decade, pseudospectral (PS) methods have emerged as one of the most efficient
numerical methods for solving constrained nonlinear optimal control problems, as evident from
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its current widespread use, include experimental demonstrations and flight operations. Based
on different orthogonal polynomials and Gaussian grids, various PS optimal control methods
can be developed. In PS methods, the grid is typically determined by the roots or the ex-
trema of orthogonal functions. Since different orthogonal polynomials have different properties
with respect to interpolation, integration, and discretization of the optimal control problem,
the approximations of the states and costates based on these various grids could have different
outcomes. For example, Chebyshev PS method offers rapid node computation and derivative
computation via a fast Chebyshev differentiation scheme that is similar to an FFT computa-
tion. However, the non-unity weight function associated with Chebyshev polynomials creates
difficulties in constructing a proper dual space. As a mean to analyze the effects of different
orthogonal polynomials and grids on solving optimal control problems, we focus on developing
PS methods over arbitrary grids for Problem B. Such research can provides a unified framework
for the analysis of different PS methods. It also provides a way to compare performances among
different PS methods and suggest guidelines for choosing the proper grids and discretization
approaches for constrained optimal control problems.

Major Accomplishments of The Project

PS Method over Arbitrary Grids

Because Problem B has boundary conditions, we choose t0 = −1 and tN = 1 to be the boundary
points. We further choose an arbitrary grid between the two end points, and denote it as
−1 < t1 < t2 < · · · < tN−1 < 1. In Ref.[12], we developed a PS discretization of Problem B that
generates a sequence of finite dimensional optimization problems given by,

(BN )



Minimize J̄N (x̄, ū) =
∑N

k=0 F (x̄k, ūk)wk + E(x̄0, x̄N )

Subject to
∑N

j=0Dkj x̄
j = f(x̄k, ūk)

e(x̄0, x̄N ) = 0
h(x̄k, ūk) ≤ 0

k = 0, 1, . . . , N

In Problem BN , D is a square differentiation matrix and wk are quadrature weights defined by

Dij = φ̇j(ti), wk =

∫ 1

−1
φk(t)dt

where φj(t) are the Lagrange polynomials given as

φj(t) =
gN (t)

g′N (tj)(t− tj)
, gN (t) =

N∏
j=0

(t− tj).

Note that both wk and D are constants that depend on the grid points only. Therefore, the
performance of the PS methods is determined by the choice of the grid. This general formulation
helps us to analyze the effects of grid selection. For example, the feasibility and the consistency
of PS methods over arbitrary grids can be guaranteed under certain conditions. One of them
is that the weights, wk, k = 0, 1, . . . , N , need to be positive for all k. When a uniform grid is
chosen, when N > 11, at least one of the weights is negative. Therefore, uniform grid is not an
appropriate choice, as convergence is not guaranteed. This point is demonstrated by way of a
linear optimal control problem in Ref.[12].
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Dual Consistency

For Problem BN to converge to Problem B, the discretization scheme must commute with the
dualization process. That is the KKT conditions of Problem BN must preserve the structure
of the continuous necessary conditions. For dual consistency analysis, consider a distilled scalar
unconstrained optimal control problem with no cost function. The costate, λ(t), must satisfy

the adjoint equation λ̇ = −∂f(x,u)
∂x λ, whose PS discretization over arbitrary grids is

Dλ̄ = −Λ(x̄, ū) · λ̄ (1)

where λ̄ = [λ̄0, · · · , λ̄N ]T and Λ(x̄, ū) is a diagonal matrix with the ith diagonal entries be
∂f
∂x (x̄i, ūi). On the other hand, the discretized state equation Dx̄ = f̄(x̄, ū) generates the KKT
conditions

DT λ̂ = Λ(x̄, ū) · λ̂ (2)

where λ̂ are KKT multipliers. Clearly, λ̂ is not the discretization of the continuous costate,
since DT is not a differentiation operator. However, it can be shown that differentiation matrix
defined on arbitrary grid can always be factorized into D = M−1S with M and S be square
matrices defined by

Mi,j =
N∑
k=0

φi(τ
l
k)φj(τ

l
k)wl

k, Si,j =
N∑
k=0

φi(τ
l
k)φ̇j(τ

l
k)wl

k

where τ lk are Legendre-Gauss-Lobatto (LGL) nodes and wl
k are LGL weights. Matrix M is

always positive definite, and satisfies Sylvester-like equation

MD +DTM = ∆ (3)

with all entries of ∆ be zero except for ∆00 = −1 and ∆NN = 1. With the help of (3), the KKT
system (2) is transferred into

D · (M−1λ̂) = −
[
M−1Λ(x̄, ū)M

]
· (M−1λ̂) +M−1∆ · (M−1λ̂) (4)

Since the discrete differentiation is applied to M−1λ̂, the scaled KKT multiplier, M−1λ̂, serves
as the discretization of the continuous costate. This is the first hidden property of PS optimal
control methods: for PS methods over arbitrary grid distribution, costate is formed by the mul-
tiplication of adjoint weight matrix M and the KKT multipliers. For standard LGL PS method,
since M is a diagonal matrix formed by LGL weights, we recover the standard approach for
costate computation, i.e., scale the KKT multipliers by LGL weights.

From (4), it is also clear that to maintain the structure of the vector field in the adjoint
equation, we need M−1Λ(x̄, ū)M = Λ(x̄, ū). For nonlinear problems, this condition holds if and
only if M is diagonal. It is another hidden property of PS methods been discovered. From the
definition of M and the property of Lagrange interpolating polynomial, M in general cannot
be diagonal for arbitrary grid. It is diagonal only if the grid, tk, coincide with LGL points, τk,
i.e., LGL grid is adopted. It explains the superior performance of LGL PS method. In fact,
the diagonal property of M is deteriorated as the grid distribution is further away from the set
of LGL points. Shown in Fig.1 are the absolute value of off-diagonal entries of matrix M with
LGL grid, CGL grid and uniform grid. It is clear that for CGL grid, off-diagonal entries are
small implying that M is approximately diagonal. For uniform grid, M is far away from being
diagonal. Since all Gaussian quadrature grids share similar distribution, such Gaussian grids
maintain the diagonal property of M approximately. Our results also explain the connection
between the Clenshaw-Curtis weights and the covector mapping theorem for the Chebyshev PS
method developed in Ref.[2]. That is, for a CGL grid, M is not diagonal but is well-approximated
by a diagonal matrix composed of the Clenshaw-Curtis weights.
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Figure 1: Magnitude of off-diagonal entries of matrix M with different types of grids (N = 20).

Primal-only Closure Conditions

The last term in (4) relates to the transversality conditions. For LGL PS method, utilizing the
diagonal property of M , a set of primal-dual closure conditions are introduced to imposed right
transversality condition. This approach was generalized to Chebyshev PS methods with M be
approximated by a diagonal matrix composed of the Clenshaw-Curtis weights. For arbitrary grid
PS methods, to handle the last term in (4) and the transversality conditions, we modify Problem
BN as follows: introduce new primal decision variables x̂0 and x̂N , which represent almost the
same quantities as x̄0 and x̄N . In the discretization of the event cost, E(x(−1), x(1)), and event
conditions, e(−1, 1) = 0, we use x̂0 and x̂N instead of x̄0 and x̄N . Therefore, the discrete cost
and the event conditions are

J̄N =
N∑
k=0

F (x̄k, ūk)wk + E(x̂0, x̂N )

0 = e(x̂0, x̂N )

The discretization of the dynamical equations is modified as

Dx̄ = f̄(x̄, ū) + (x̄0 − x̂0)r0 + (x̄N − x̂N )rN

where f̄(x̄, ū) = [f(x̄0, ū0), · · · , f(x̄N , ūN )]T . r0 and rN are the first and the last column of
M−1. It can be shown that r0 and rN are explicitly given by

r0,k =
(−1)N+1

2
L̇N (tk)(t− 1)

rN,k =
1

2
L̇N (tk)(t+ 1), k = 0, 1, · · · , N

where LN (t) is the Nth order Legendre polynomial. Such modification generates a modified
Problem BN that enables dualization to commute with discretization. This new scheme facili-
tates enhancing the algorithmic efficiency of the underlying spectral algorithm by generating a
full-rank KKT system. The proposed primal-only closure condition is easy to implement and
applicable to different PS methods including Legendre and Chebyshev PS methods as special
cases.

Flight Results

During this research period, we also got an opportunity to apply our ideas to the time-optimal
reorientation of a NASA spacecraft in orbit. On August 2010, we led a team of engineers and
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operators to perform a historic command and control of the Transition Region and Coronal
Explorer (TRACE) space telescope. Prior to our flight test, no spacecraft had ever performed
a minimum-time attitude maneuver. This is, in part, because of the well-known difficulties in
solving the minimum-time spacecraft attitude control problem. Our techniques allow an operator
to perform verification and validation of the command signals without a need to understand PS
optimal control theory. Because TRACE is actuated by reaction wheels, the resulting dynamics
are not only non-Eulerian but also, the control space is non-convex and state-dependent. The
well-known difficulties in solving such problems were easily circumvented by our PS theory. The
mathematical implications as well as the engineering results acquired from the telemetry are
being analyzed now with the goal of publications in the coming years.

Other Advancements

During this research period, we also extended our previous work on feasibility, consistency and
convergence analysis. When the Legendre PS method is used for feedback linearizable systems,
we showed in Ref.[3] that the rate of convergence is at least 1

N2m/3−1 , where m is defined by the
smoothness of the optimal trajectory; i.e. an appropriate Sobolev space. If the optimal control
is C∞, then the convergence rate can be made faster than any given polynomial rate. Relative
to our earlier results, we also weakened the assumptions in the theorems we proved. In this
research project, we also analyzed the performance of a PS algorithm for generating real-time
solution of infinite-horizon optimal control problems. We proved the closed-loop stability under
box constraints on states and controls. Such results are important for real-time space control
applications.

Ongoing Work and Future Research Plans

This is the final year of a three-year project. The new developed PS computational scheme paves
the way to construct more efficient algorithms for solving optimal control problems, for example,
multiscale PS methods for dynamical systems with different timescales. Many space applications
involve both slow and fast dynamics. The nature of such systems with mixed time-constants
suggests a possible efficient discretization using multi-resolution for different subsystems. The
new developed arbitrary grid PS method provides flexibility in designing different grids for
different subsystems. We will explore this idea, together with a covector mapping theorem for
costate computation, to develop multiscale PS methods.
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